JPEG-XS and ST 2110

ST 2110 is taking off

It is designed to become the infrastructure of choice


What is the «real » economics of going IP?

- Reducing complexity
 - less cables, bi-directional
- Becoming more agile
 - re-routing, easy configuration, less space, smaller building & OB, simplified workflows
- Reducing Cost?

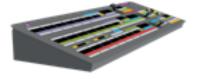
We have more pixels to manage, store and transport

... but the roads are jammed already
« Can we put more cars on a road without creating traffic jam & delaying the arrival time of each passengers? »

HD: Needs 10GbE infrastructures

Uncompressed: **2.4 Gbps** for HD 60fps

IP INFRASTRUCTURE 10GbE



IP REPLAY & STORAGE

Intra-frame compression is needed for the storage to ease read & write access to the disks & to reduce storage cost of all incoming streams


IP PRODUCTION SWITCHER

IP MONITORING

Many solutions exist for downscaling great amounts of streams in low resolution

COTS IP SWITCH

COTS in this case means at least 10GbE ports for all devices & switches

(At least Cat 6 cables)

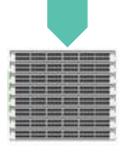
4K: Needs at least 25GbE infrastructures

Uncompressed: **9.6Gbps** for 4K 60fps

IP INFRASTRUCTURE 25GbE?

IP REPLAY & STORAGE

Intra-frame compression is needed for the storage to ease read & write access to the disks & to reduce storage cost of all incoming streams


IP PRODUCTION SWITCHER

IP MONITORING

New scaling capabilities needed for monitoring

COTS IP SWITCH

COTS in this case means at least **25GbE ports** for all devices & switches

8K: Needs at least 100/400GbE infrastructures

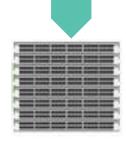
Uncompressed: **38,4Gbps** for 8K 60fps and **76,8Gbps** for 8K 120fps

IP INFRASTRUCTURE 100/400GbE?

IP CAMERAS

IP REPLAY & STORAGE

Intra-frame compression is needed for the storage to ease read & write access to the disks & to reduce storage cost of all incoming streams

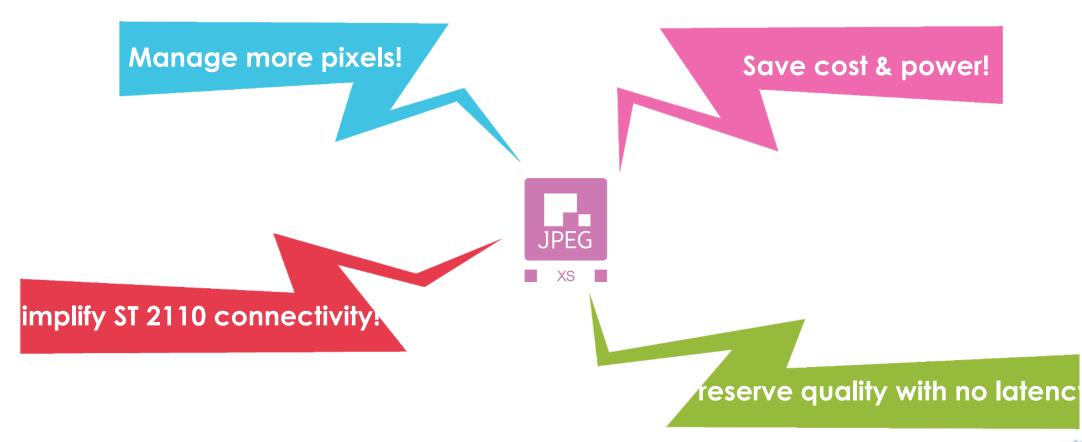

IP PRODUCTION SWITCHER

IP MONITORING

New scaling capabilities needed for monitoring (even more steps down)

COTS IP SWITCH

COTS in this case means at least 100/400GbE ports for all devices & switches

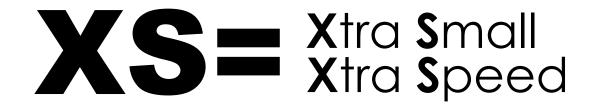

What if a technology could help

...managing easily more pixels over a limited bandwidth, safeguarding low latency and a pixel perfect quality?

Call for a new standard

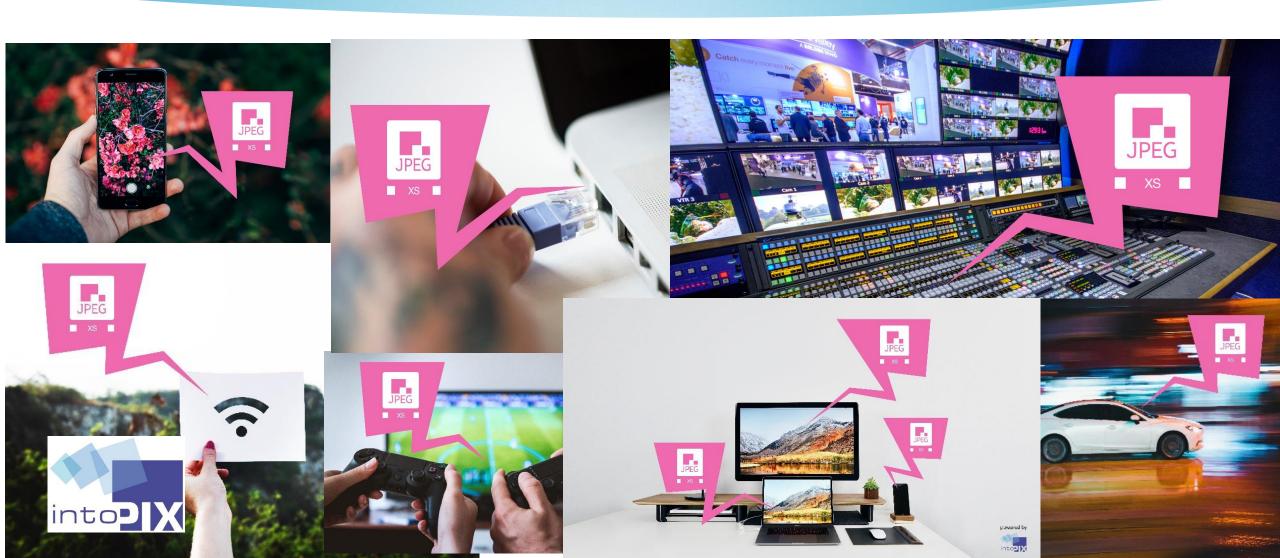
Call for a new standard

2016 2017 2018 2019


Call for proposal
A new low-latency
ligthweight image
coding system
Liaison with AIMS, SMPTE
and VSF

TICO selected as baseline amongst 6 international proposals.

Collaborative work.
The standard moves to voting and publication phases


JPEG-XS goes Life!

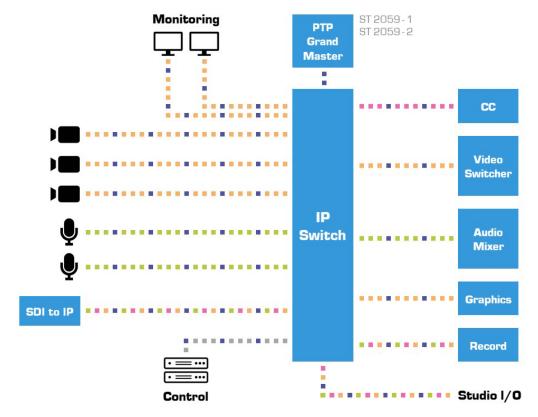
First implementations shown at NAB 2019

Where can JPEG XS be implemented?

Where can JPEG XS be implemented?

JPEG-XS, Coming to ST2110

The new Part -22 - Compressed video essence


Video RTP Packet (Part 20/22)

Audio RTP Packet (Part 30/31)

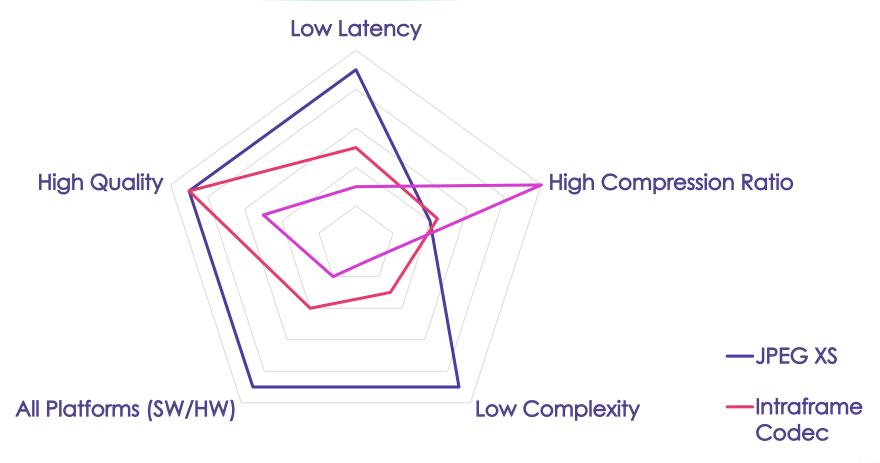
Data RTP Packet (Part 40)

PTP Sync Packet

Control Packet

JPEG-XS, coming to ST 2110 ongoing standardisation

ITEM	Description	Target Date
ISO/IEC 21122-1	Part 1 : Core coding system	Q2 2019: PROOF – to be soon published + AMD for extended cap. Q2 2020
ISO/IEC 21122-2	Part 2 : Profiles and buffer models	Q2 2019: submitted to ISO for publication + AMD for extended cap Q2 2020
ISO/IEC 21122-3	Part 3: Transport and container formats	Q3 2019: under last ballot – Final DIS
ISO/IEC 21122-4	Part 4: Conformance testing	Q3 2019: under last ballot - DIS
ISO/IEC 21122-5	Part 5 Reference software	Q4 2019: first ballot - CD
IETF RFC JPEG-XS RTP	JPEG-XS RTP payload	Draft formally adopted by IETF payload WG https://datatracker.ietf.org/doc/draft-ietf-payload-rtp-jpegxs/
SMPTE 2110-22	Compressed essence in ST 2110	Final Stage.


JPEG-XS, Benefits to ST 2110

- ** transport of compressed essence instead of uncompressed.
 - better in bandwidth to manage multiple streams in HD, 4K and 8K
- keep all existing advantages of moving to IP
 - flexibility, scalability, unlimited accessibility
- better impact on operating and infrastructure costs
 - upgrade capability, lower investments, lighter infrastructures & systems smaller interfaces, ease the remote production and cloud migration.

JPEG-XS, Replacing Uncompressed

Combining the best speed, complexity and quality in one codec

JPEG XS, Rigorous ISO Quality Assessments

Tests with objective and subjective methods

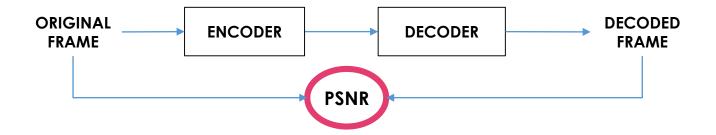
New ISO/IEC 29170-2 method for nearlossless quality assessment on both natural & synthetic images)

- ✓ Full transparency to uncompressed down to 3bpp (10:1)
- ✓ Visually lossless down to 1.5bpp (20:1) on film/TV content
- Smooth degradation down to 0.5bpp (ringing artefacts/ no blocking artefacts!)

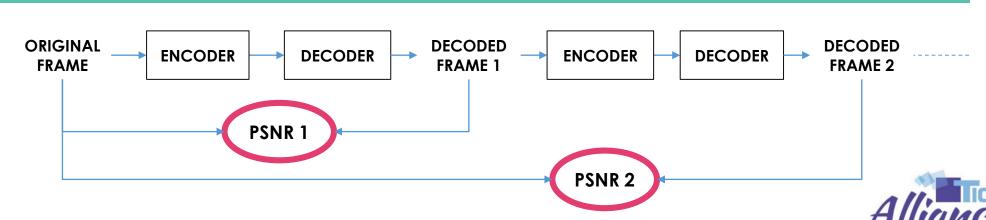
"FLICKER TEST"

Test on 360 scores (= persons) in total (from 4 universities/research centers)

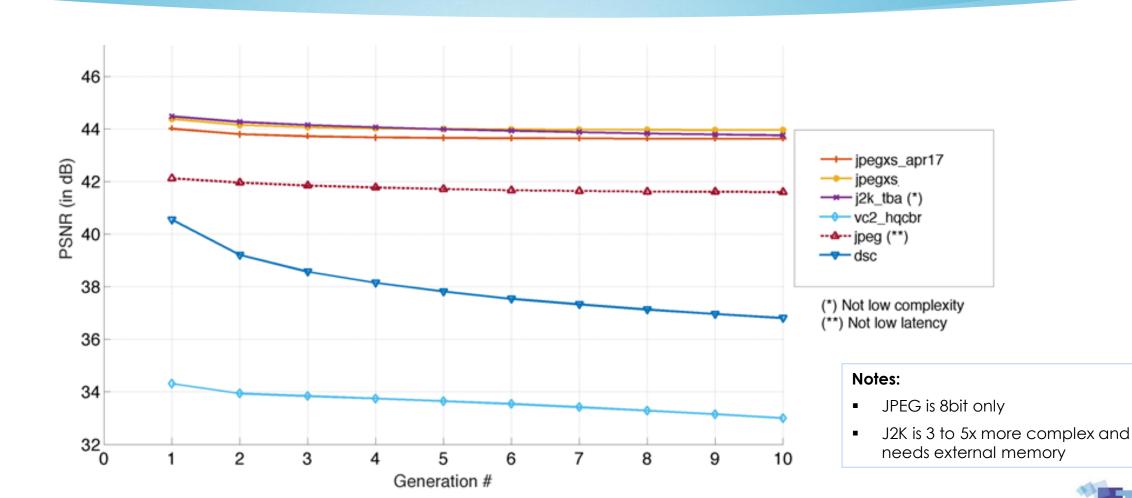
JPEG XS, Example content (CGI, desktop, natural)



JPEG XS, Best quality in single- and multi-generation

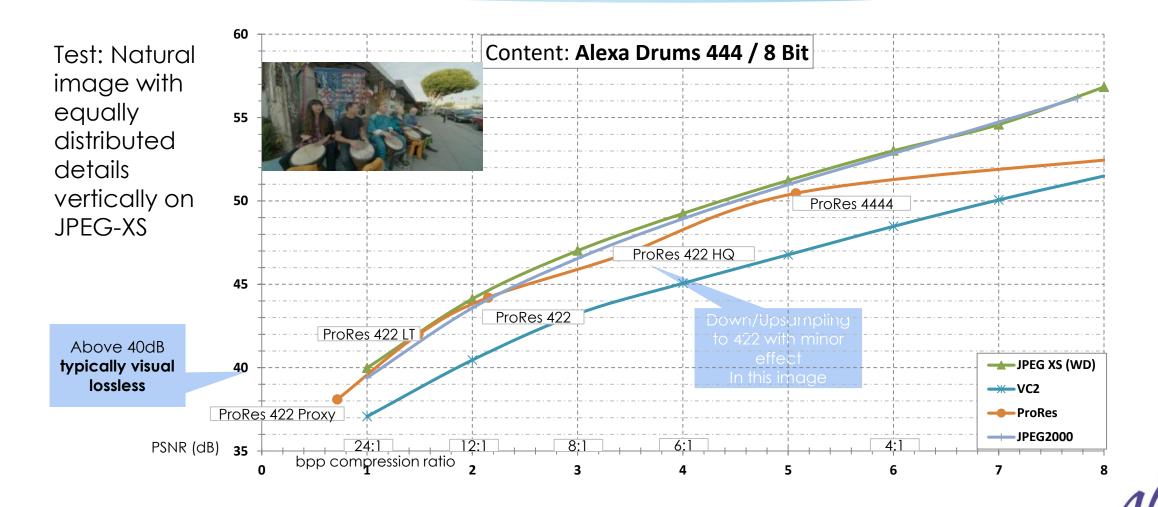


SINGLE GENERATION EXPERIMENT

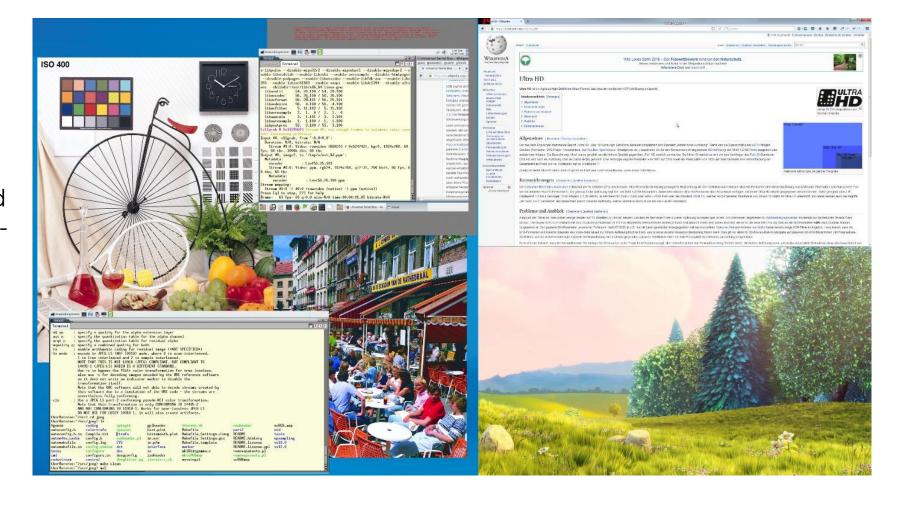

MULTI GENERATION EXPERIMENT

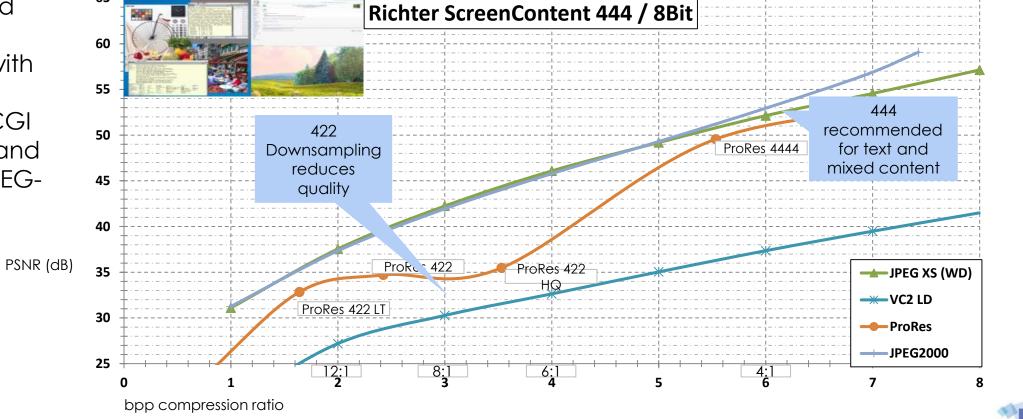
Performed for 10 generations

JPEG XS, Best quality in multi-generation



Test: Natural image with equally distributed details vertically on JPEG-XS




Test: Mixed desktop content with natural images, CGI content, and text on JPEG-XS

Test: Mixed desktop content with natural images, CGI content, and text on JPEG-XS

JPEG-XS, Minimal latency

- Down to a few **microseconds** (down to 1/10 of a millisecond):: only a few video lines.
- Maximum responsiveness (few μs) lines perfect for any latency critical applications
- CBR (constant bitrate) for reliable video over IP transport.

Humans are able to detect a latency only above 13 milliseconds.

JPEG XS, All platforms

Minimal complexity...leading to maximum efficiency

- Multiple profiles for Low power, Low logic
 - no external memory in hardware (FPGA, ASIC)
 - The smallest codec for FPGA at this efficiency
- Optimal syntax for software and speed optimizations (CPU, GPU)
 - up to 5x faster or more than JPEG2000 ISO standard in CPU, GPU
- Best ratio cost/infrastructure trade-off & Best ratio power trade-off

JPEG XS, Maximum Flexibility

- Multiple resolutions: HD, 4K, 8K... up to at least 16Kx16K
- **Multiple chroma formats:** 4:4:4, 4:2:2, 4:2:0, grayscale
- Multiple color formats: RGB, YUV, ...
- **Multiple bit depths:** From 8, 10, 12, 14 to 16bit
- **HDR support**: HDR support

JPEG XS, Maximum Flexibility

8K codestream

Built-in 1- to 2-level downscaler

- HD/4K/8K downscaler within workflows (i.e. for monitoring purpose)
- Lower CPU/GPU decoding requirements (less consumption to decode HD than 4K & 8K)
- Partial extraction for faster analytics and detection

Partial 4K

Partial 8K

Partial HD

Original 8K

kfloy or

JPEG XS, ST 2110 Bandwidth-efficient workfloy

FORMATS	JPEG-XS	IP NETWORKS & SDI MAPPING
HD 720p60 /1080i60	200 Mbps - 70 Mbps	1 to x streams over 1GbE (CAT 5e)
HD 1080p60	400 Mbps - 150 Mbps	1 to x streams over 1GbE (CAT 5e)
4K 2160p60	1,6 Gbps - 500 Mbps	1 stream over 1GbE (CAT 5e) 1 to x streams over 10GbE (CAT 6) Down to a single SDI cable (HD/3G-SDI)
8K 4320p60	6,4 Gbps - 2 Gbps	1 to 4 streams over 10 GbE (CAT 6) Down to a single SDI cable (3G/6G/12G-SDI)
8K 4320p120	12,8 Gbps - 4 Gbps	1 to 2 streams over 10 GbE (CAT 6) Down to a single SDI cable (6G/12G-SDI)

JPEG XS, ST 2110 Bandwidth-efficient workfloy

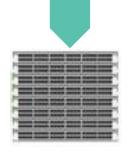
HD, 4K, 8K Uses no no or even just

IP INFRASTRUCTURE **max. 10GbE**

IP CAMERAS

IP REPLAY & STORAGE

IP PRODUCTION SWITCHER



IP MONITORING

Full access to 8K proxies directly from the coded streams

No scaling required, even from a simple laptop

COTS IP SWITCH

COTS in this case means max. **10GbE ports** for all devices & switches

Conclusion

- JPEG-XS meets all the ST2110 quality requirements
 - CBR, latency, quality, complexity, ...
- JPEG-XS bandwidth-reduction enables to achieve more with ST2110
 - higher pixel rates, more streams, cheaper cables (CAT5e, 3G-SDI) and interfaces (<1Gpbs, <10Gbps), reduced costs, reduced storage, reduced IP packets, ...

ST2110-22 & JPEG-XS are enabling to create cost-effective, bandwidth-efficient and high quality IP production workflows

