

1916-2016

the proper tool for the task at hand?

Momentum is gaining for UHD live production

- Several professional sports leagues and networks are now active in launching UHD coverage of their games
- Many new mobile production trucks/OB vans launched in the last 12 months
- However, the design and core technologies utilized in production of UHD continues to evolve

A BELDEN BRAND

Momentum is gaining for UHD live production

SBS UHD4K

NEP UHD41

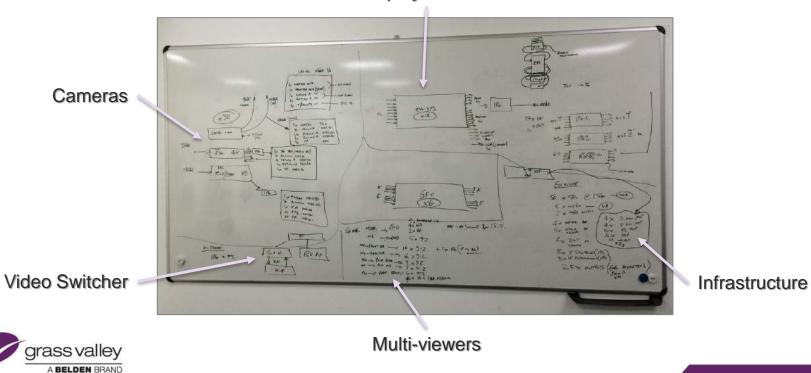
Broad range of designs – and UHD capabilities

Notable OB vans launched in recent months:

	Croatel <i>OB5</i> (Zagreb)	SBS UHD 4K (Seoul)	Al Kass <i>OB10</i> (Qatar)	NEP UHD41 (Zurich)	Dome <i>Pioneer</i> (Toronto)	Arena OBX (London)
UHD	Yes	Yes	No	Yes	Yes	Yes
Operators	17?	17	29	19	22	43
Cameras	16 UHD 20 X HD	12 UHD	11	12	10	32
Replay channels	2 X 3 UHD channels	2 X 3 UHD channels	9 X 12 HD channels	4 X 4 channels	5 X 3 channels (wired for 12)	12 X 4 channels
Router Matrix	288 x 576 (3G)	128 X 128 (12G)	288X450 (3G)	256X328 (3G)	135 X 112 UHD	2.88 Tbps IP
Core infra		12G SDI	3G SDI	3G SDI	3G SDI	IP

The Challenge

- Grass Valley was approached late Summer 2015 by Arena Television to contribute to the design of an IP-based live production solution for premier sporting events
- Arena's core requirements:
 - COTS based infrastructure Cisco, Arista, Juniper or HP No Redundancy
 - Standards based SMPTE ST 2022-6, AES 67, TR04 and TR03 (SMPTE ST 2110), RDD 35 (TICO)
 - Signal agnostic UHD 2160p50, 3G 1080p50 and HD 1080i50
 - Future-ready HDR (High Dynamic Range) and HFR (High Frame Rate)
 - Reduction in cabling including less weight and easier access to equipment
 - Of course ... as cost neutral to an equivalent Quad-SDI based solution as possible!


The Challenge

- OB Truck (Triple Expander) technical requirements:
 - 32 x UHD Cameras
 - 12 x UHD Replay Systems (4 in / 2 out)
 - 1 x UHD Video Switcher (48 in / 24 out)
 - 47 x 3G/HD Multi-viewers (486 unique sources)
 - Extensive IP/SDI Connectivity with Video & Audio Processing
 - o Complex TX paths (UHD, 3G, HD, SD)
 - Flexible Tailboard (Bi-directional I/O)
 - External IP frames for Graphics and Presentation trucks
 - Ability to connect multiple OB trucks together via IP infrastructure (100GbE)

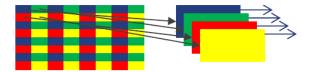
Where did we start?

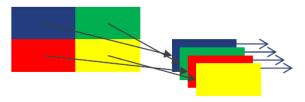
As with most complex system designs ... scribbling on a whiteboard ...

Replay Servers

TICO Mezzanine compression

- Effective way to transport multiple streams of UHD over 10Gb
- Light way compression, 4:1, reducing UHD to the size of 3G.
- Visually lossless indistinguishable image loss over multiple generations.
- Very low latency:
 - Encoding is 4.5 vertical line
 - Decoding is 2.5 vertical line.
- ♣ TICO SMPTE RDD35:




- Transport TICO as a 3G-SDI signal over ST 2022-6
- Future support for ST 2110-20 to transport TICO as a compressed essence

Uncompressed UHD transport

- Quad Link SDI at 3G per coax SMPTE ST 424-5
 - 2SI = 2 Sample Interleave
 - -4 sub images used to alternate sampling every 2 pixels and every line.
 - This the method defined in all UHDTV specifications and the prefer method
 - Low Latency 1 line of inherent delay!
 - SDQS = Square Division Quad Split
 - Image is split into 4 quadrants.
 - Used by most 1st generation equipment
 - $-\frac{1}{2}$ frame of inherent delay.

End-point Device – Cameras

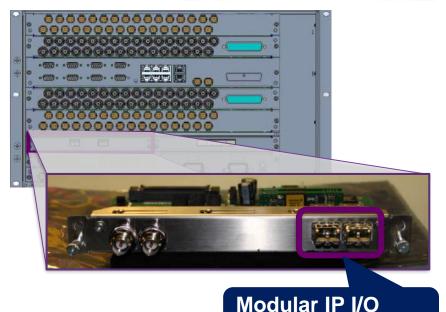
- Cameras Operational Modes
 - Native UHD Sensor
 - Native TICO Support
 - IP Gateway Interface (1 x 10GbE)
 - Main & Monitor Outputs via IP
 - Camera Returns & TP via IP
 - XML Interface for Device Control

10 GigE IP Fiber and Ethernet connectivity

- Scalable from "just" video to a full IP production
- 4K over 1 wire with TICO

End-point Device – Production Switcher

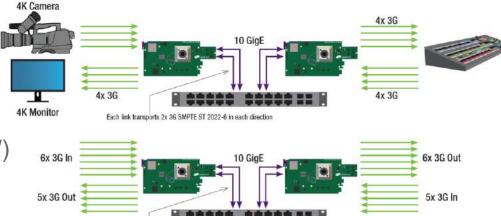
Video Switcher Operational Modes


- 4ME Mode in UHD 2160p50
- 2-Sample Interleave Support
- IP Gateway Interfaces (10GbE)

Enhancements

- Native TICO Support
- 1080p50 Monitoring Stream

(2 x 10GbE SFP+)



End-point Device – IP Gateways

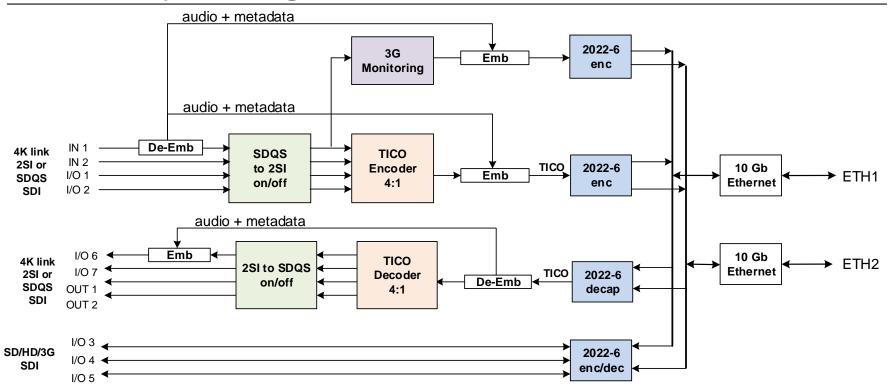
- IP SDI Gateway Cards
- Operational Modes
 - HD 1080i50 (11 x GW)
 - 3G 1080p50 (6 x GW)
 - UHD 2160p50 / TICO (2 x GW)
- Enhancements
 - Aggregation Mode (2 x 10GbE)
 - Square Division Quad Split (SDQS) to/from 2-Sample Interleave (2SI)

13

Each link transports 3x 3G SMPTE ST 2022-6 in each direction

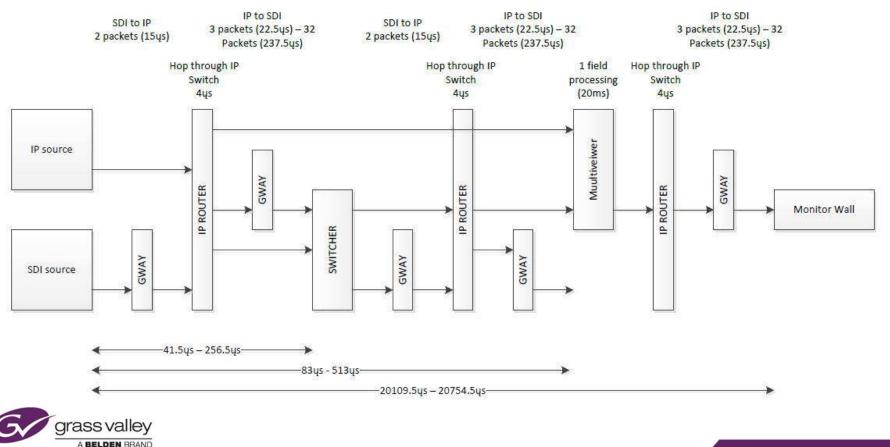
IP Aggregation

IP Gateways to "Bridge" native IP and legacy SDI equipment

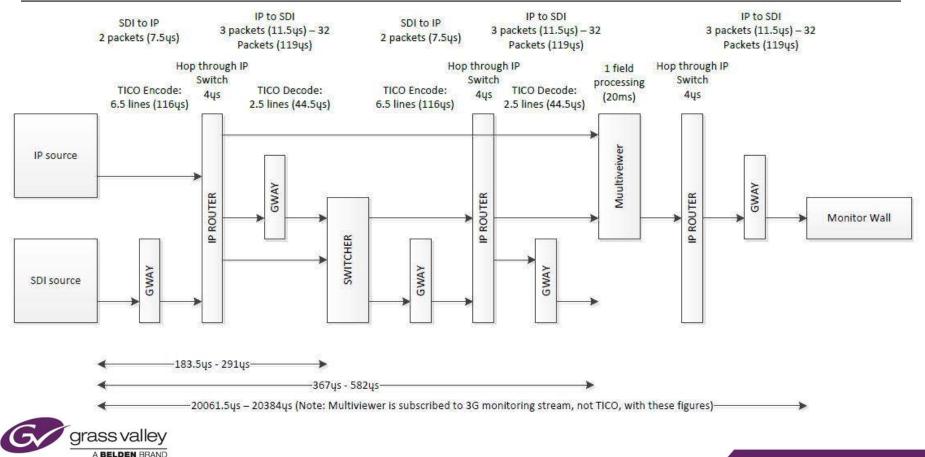


	Camera IP			Camera SDI		
	Native IP		Via IP	Native IP		Via IP
Signal	UHD	HD/SD	Gateway	UHD	HD/SD	Gateway
Program Output	*					*
Monitor Super Output		*				*
Return Input		*				*
Return Input		*				*
Tele Prompted Input		*				*
Monitor Clean Out			*			*
Return Input C			*			*

IP Aggregation 183 cards across 16						
IP Gateways	frames processing 643 multicasts					
		IPG	Multicasts			
	Function	Cards	UHD	HD/SD		
	Camera	22	18	136		
	Replay	50	72	84		
	Switcher	28	56	0		
	Format Conversion	38	68	36		
	Transmission Infrastructure			18		
	22	21	66			
	External Links	9	14	34		
Grassvallev	Total	183	273	374		



Gateway design for UHD over 1-wire



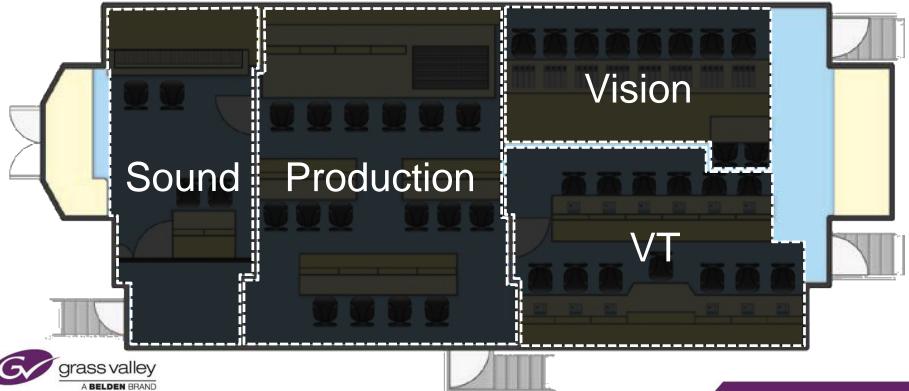
TIMING producing at HD 1080i50

TIMING at UHD with TICO

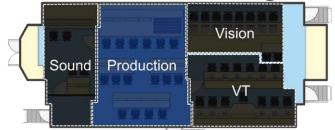
Expected IP Switch Performance

- Must be suitable for Broadcast Video applications
 - IGMPv2 and IGMPv3 (Internet Group Management Protocol) support
 - Single IGMP requests processed in less than 10 msec
 - A minimum of 150 multicast groups per 10GbE physical interface supported on the network switch (i.e. scaling accordingly for 40GbE)
 - Network switching with non-blocking wire-speed switching and forwarding performance
 - Every physical interface capable of simultaneously transmit & receive packets at maximum port speed (i.e. 1Gbps, 10Gbps, 40Gbps) without any degradation in performance (i.e. packet drop, additional jitter, additional port-to-port latency) regardless of packet size (i.e. up to 1500 bytes / no jumbo frames)
 - Separate dedicated control network required

Expected IP Switch Performance


- Cisco Nexus 9272Q Spine and Leaf Topology was chosen
 - Utilising Cisco's "non-blocking multicast" (NBM) algorithm which is specifically designed for professional media network solutions

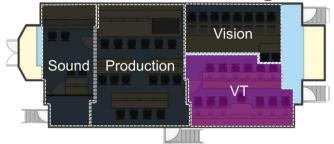
40GbE AOC connectivity between the Spine and Leaf

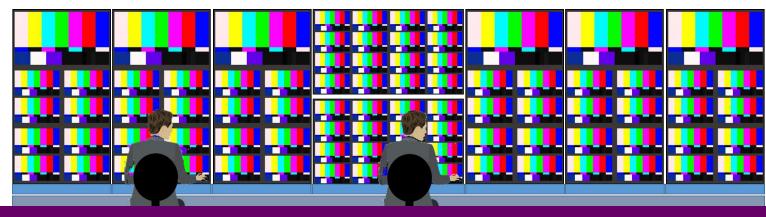

- 2.88Tbps of network bandwidth available in both directions
- 40GbE Breakout Mode required (4 x 10GbE Lanes)
- End-point device connectivity requirements
 - 48 x 40GbE QSFP+ (GV Node / Multiviewers)
 - 230 x 10GbE SFP+ (IP Camera, Video Switcher and Gateway cards)
 - End-point devices distributed across leafs for redundancy



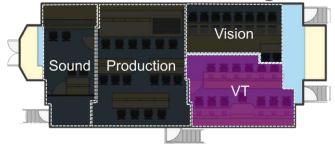
- Multi-Viewer design had a significant impact

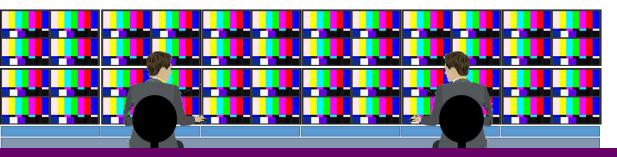
- Multi-Viewer design had a significant impact


Front Production: 172 sources X 16 displays

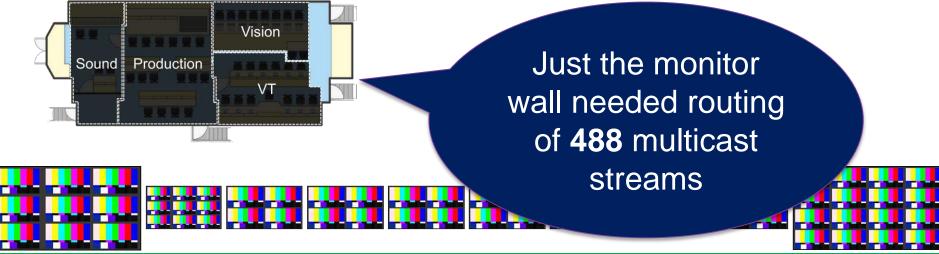

- Multi-Viewer design had a significant impact

Rear Production: 40 sources X 10 displays


- Multi-Viewer design had a significant impact



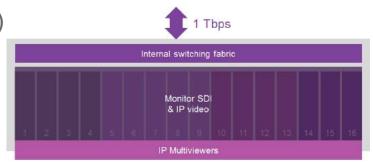
Front VTR: 86 sources X 8 displays


- Multi-Viewer design had a significant impact

Back VTR: 48 sources X 12 displays

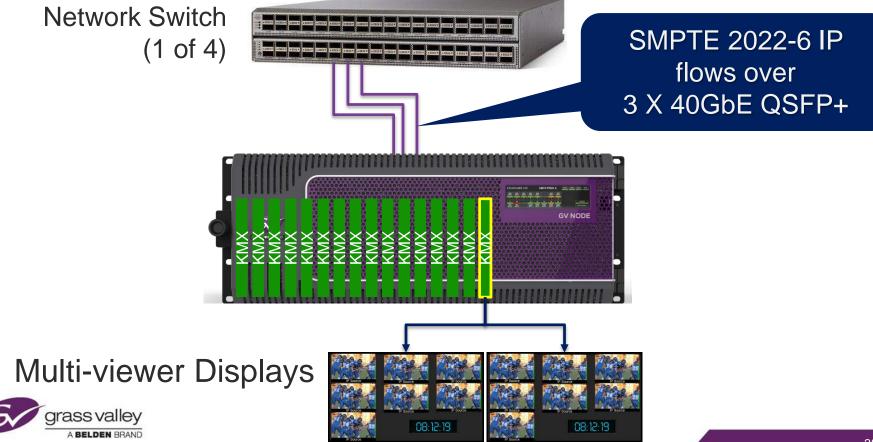
- Multi-Viewer design had a significant impact

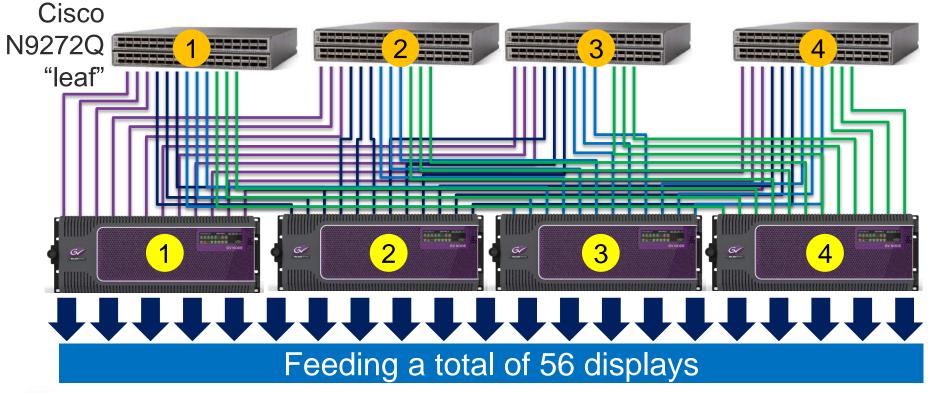
Engineering: 62 sources X 10 displays


End-point Device – Routing + Multiviewer

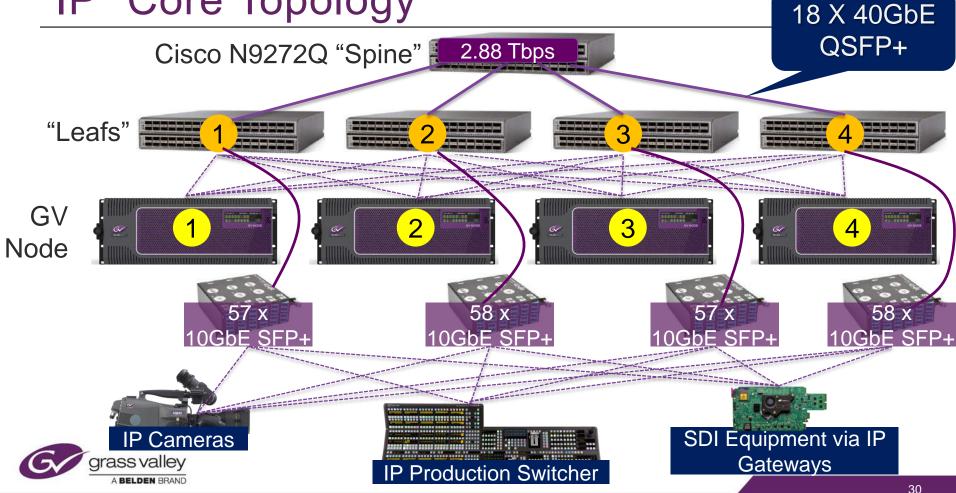
- GV Node KMX-4911 Multi-viewer Cards
- Operational Modes
 - 16 x Card slots (SDI I/O & Multi-viewers)
 3G 1080p50 and HD 1080i50 (144 x 144)
 - 12 x 40GbE QSFP+ Aggregation Ports
 3G 1080p50 and HD 1080i50 (144 x 144)

Enhancements


- 9x2, 18x2, 27x4 and 36x4 support
- SDI <> IP and IP <> IP Vertically Accurate Switching



"IP" Core Topology



"IP" Core Topology

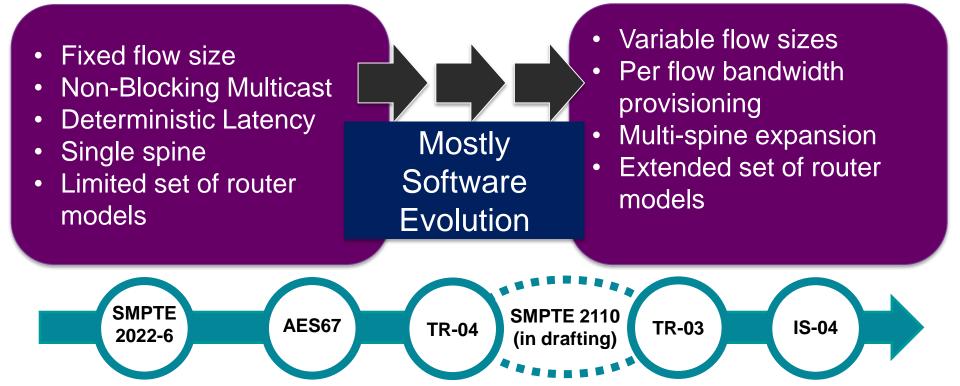
"IP" Core Topology

Vertically Accurate Switching

- Distributed IP architecture around the OB truck
 - No singular monolithic core switching video router

Vertically Accurate Switching was isolated to the areas of need:

- Video Switcher (of course!)
- Emergency Switching (in the event of switcher failure)
- Camera "OCP" Touchdowns
- Replay / VT Line Feeds
- VT Guarantee Position


What's Next?

Real-world Glass-to-Glass IP based solutions are here and ready to be deployed today, but technology and standards are also evolving:

Baseline for Interoperability	Enable IP Streaming for Audio	Support Split Video and Audio Routing	Bandwidth Efficiency to Split Audio and ANC Data Routing	Enable Discovery and Registration of Compliant Streams	
SMPTE 2022-6	AES 67	VSF TR-04 - SMPTE 2022-6 - AES67 SMPTE 2059	VSF TR-03 - IETC RFC 4175 - AES67 - SMPTE 291 SMPTE 2059	IS-04	
SMPTE 2022-6	AES67		E 2110 afting) TR-03	IS-04	

What's Next?

Evolution in the management of flows, individual essences will impact network design considerations

Vidtrans 2017

Feb 28 - Mar 2, 2017 Marina del Rey, CA

InterOps

Sponsored by

Technologies Demonstrated

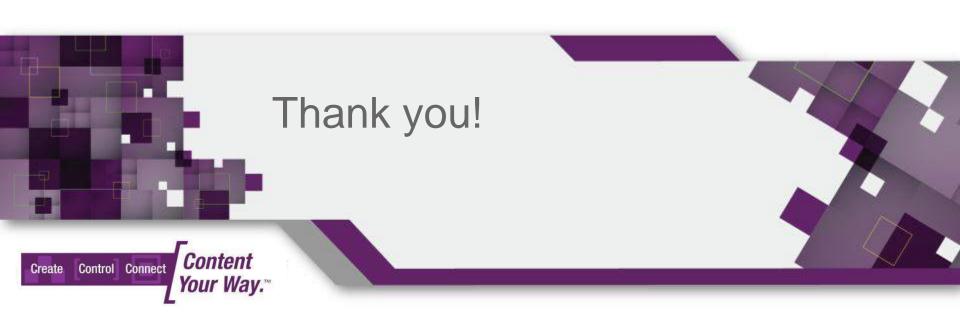
Draft SMPTE ST-2110 - 10/20/30 IP Ancillary Data SMPTE ST-2059 Timing SMPTE ST-2022-7 Protection Switching AMWA IS-04 NMOS Discovery & Registration

Participating Companies

Arista Networks COBALT DIGITAL COVELOZ Technologies, Inc. Evertz Grass Valley, a Belden Brand Imagine Communications Macnica Mellanox Technologies, Inc. Nevion Ross Video SAM - Snell Advanced Media Sony Corporation

Support

EBU Fox IRT PacketStorm Communications Video Clarity


Vidtrans 2017

Vidtrans 2017

